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Enhancement of nonlinear susceptibility in a four-level
tripod scheme
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We propose a scheme for the enhancement of nonlinear susceptibility in a four-level tripod-type atomic sys-
tem in the presence of a microwave field. With a microwave field, nonlinear susceptibility can be enhanced.
Nonlinearity can also be ulteriorly enhanced by controlling the coupling field under the optimal intensity
of the microwave field. The physical mechanism of the obtained giant nonlinear susceptibility is mainly
based on interactions between microwave field and coupling fields. We present a physical understanding
of our numerical results using a dressed-state approach and an analytical explanation.
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Third-order Kerr nonlinearity (χ(3)) plays an impor-
tant role in nonlinear optics; it has many fascinating
applications in different areas of physics, ranging from
phase modulation[1], generation of optical solitons[2],
and optical switching[3] to optical communication and
computing[4,5]. Achieving giant Kerr nonlinearity with
low light powers is desirable because it can be used
to realize single-photon nonlinear devices. In recent
years, the study of large third-order nonlinear suscepti-
bility with significantly reduced or even completely can-
celled linear absorption has aroused much interest both
theoretically[6−10] and experimentally[11−13]. Producing
giant Kerr nonlinearity coupled with reduced absorption
using quantum interference effects related to electro-
magnetically induced transparency (EIT) is a universal
atomic scheme[7,14,15]. Another kind of coherence, spon-
taneously generated coherence (SGC), can also change
the nonlinear and linear response of optical media[16].
Niu et al. showed that an enhanced Kerr nonlinearity
coupled with vanishing linear and nonlinear absorptions
can be achieved through SGC[17,18].

In this letter, we consider the interaction of a four-level
quantum system in a tripod configuration with two cou-
pling fields, one weak probe field and a microwave field.
Based on EIT, these fields were used in Ref. [19] to study
the possibility of controlling the enhancement of Kerr
nonlinearity through the relative phase of driven fields.
Moreover, we intend to study the possibility of control-
ling the enhancement of Kerr nonlinearity by changing
the Rabi frequency values of the coherent coupling field
or the microwave field while keeping the relative phase
of driven fields at zero. Results show that the magni-
tude of Kerr nonlinearity can be enhanced within the
left transparency window by appropriately choosing the
microwave field value, even when the two coupling fields
are equal. This is different from Ref. [20], where the two
EIT windows are equal and the enhancement of Kerr

nonlinearity is accompanied by strong linear absorp-
tion. We also study the effect of the coupling field on
Kerr nonlinearity. Results show that Kerr nonlinearity
can be ulteriorly enhanced by controlling the coupling
field under optimal intensity of the microwave field. A
dressed-state approach and an analytical explanation are
developed to explicate our numerical results.

We consider a four-level tripod-type atomic system, as
shown in Fig. 1. It has one excited state (|4〉) and three
lower-level states (|1〉, |2〉, and |3〉). One microwave field
(field 2) and two coupling fields (fields 3 and 4) with
Rabi frequencies of Ω2,Ω3, and Ω4, respectively, are ap-
plied to |2〉 ↔ |3〉, |3〉 ↔ |4〉 , and |2〉 ↔ |4〉 transitions.
A weak probe field (field 1) with a Rabi frequency of
Ω1 is applied to couple the ground states (|1〉 and |4〉).
Spontaneous decay rates from the excited state (|4〉) to
all the lower levels are denoted by γ4; ω1, ω2, ω3, and ω4

are carrier frequencies of the corresponding fields; ∆1 =
ω41−ω1,∆2 = ω32−ω2,∆3 = ω43−ω3, and ∆4 = ω42−ω4

are the frequency detunings of probe field 1, microwave
field 2, and the two coherent coupling fields (fields 3 and
4), respectively.

Fig. 1. Schematic diagram of the studied system. It con-
sists of three lower levels and a single upper level. The lower
states are coupled near-resonantly to the excited state by
Ω1, Ω3, and Ω4, respectively, and a microwave field is applied
to |2〉 ↔ |3〉.
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Under rotating-wave approximation, systematic den-
sity matrix in the interaction picture can be written as

ρ̇11 = −iΩ1(ρ14 − ρ41) + γ4ρ44,

ρ̇12 = i(∆1 −∆4)ρ12 + iΩ1ρ42 − iΩ2ρ13

− iΩ4ρ14,

ρ̇13 = i(∆1 −∆3)ρ13 + iΩ1ρ43 − iΩ2ρ12

− iΩ3ρ14,

ρ̇14 = i∆1ρ14 − iΩ1(ρ11 − ρ44)− iΩ3ρ13

− iΩ4ρ12 − 3
2
γ4ρ14,

ρ̇22 = −iΩ2(ρ23 − ρ32)− iΩ4(ρ24 − ρ42)
+ γ4ρ44,

ρ̇23 = −i(∆3 −∆4)ρ23 − iΩ2(ρ22 − ρ33)
− iΩ3ρ24 + iΩ4ρ43,

ρ̇24 = i∆4ρ24 − iΩ1ρ21 + iΩ2ρ34 − iΩ3ρ23

+ iΩ4(ρ44 − ρ22)− 3
2
γ4ρ24,

ρ̇33 = −iΩ2(ρ32 − ρ23)− iΩ3(ρ34 − ρ43)
+ γ4ρ44,

ρ̇34 = i∆3ρ34 − iΩ1ρ31 + iΩ2ρ24

+ iΩ3(ρ44 − ρ33)− iΩ4ρ32 − 3
2
γ4ρ34. (1)

The foregoing equations are constrained by
∑4

n=1
ρnn(t) = 1 and ρ∗ji = ρij . In the present letter, we aim to
investigate the feasibility of enhancing Kerr nonlinearity
while simultaneously inhibiting the absorptions. There-
fore, we need to derive the linear and third-order nonlin-
ear susceptibilities. In the present approach, an iterative
method is used, and the density matrix elements are ex-
pressed as ρij = ρ

(0)
ij + ρ

(1)
ij + ρ

(2)
ij + ρ

(3)
ij + · · · . Assuming

that Ω1 is very small compared with Ω2,Ω3, Ω4, andγ4,
the zeroth-order solution is ρ

(0)
11 = 1 and the other ele-

ments are equal to zero. Under weak-probe approxima-
tion, we get the matrix element ρ14 up to the third order
as follows:

ρ
(1)
12 =

2Ω1

β
[Ω2Ω3 + (∆1 −∆3)Ω4], (2)

ρ
(1)
13 =

2Ω1

β
[Ω2Ω4 + (∆1 −∆4)Ω3], (3)

ρ
(1)
14 =

2Ω1

β
[(∆1 −∆3)(∆1 −∆4)− Ω2

2], (4)

Fig. 2. Variation of Re[χ(3)] (solid curves) and Im[χ(1)] (dot-
ted curve) as functions of the probe detuning ∆1. The
parameters for the calculations are ∆3 = −∆4 = γ4 and
Ω4 = γ4. (a) Ω2 = 0, Ω3 = γ4; (b) Ω2 = 0.5γ4, Ω3 = γ4;
(c) Ω2 = 1.0γ4, Ω3 = γ4; (d) Ω2 = 1.0γ4, Ω3 = 0.5γ4; (e)
Ω2 = 1.0γ4, Ω3 = 1.5γ4; (f) Ω2 = 1.0γ4, Ω3 = 1.8γ4.

ρ
(2)
11 =

Ω1

12γ4[(∆4 −∆3)Ω3Ω4 + Ω2(Ω2
3 − Ω2

4)]2

{6γ4A[(∆3 −∆4)Ω4 − 2Ω2Ω3] (ρ(1)
13 + ρ

(1)
31 ) + 6γ4A[(∆3 −∆4)Ω3 + 2Ω2Ω4](ρ

(1)
12 + ρ

(1)
21 )

+ 4Ai[(∆3 + ∆4)Ω2Ω3 − (∆2
3 −∆3∆4 + 2Ω2

2 − Ω2
3)Ω4 + Ω3

4] (ρ(1)
13 − ρ

(1)
31 )

− 4Ai[(∆2
4 −∆3∆4 + 2Ω2

2 − Ω2
4)Ω3 − (∆3 + ∆4)Ω2Ω4 − Ω3

3](ρ
(1)
12 − ρ

(1)
21 )

− {9iγ2
4 [(∆3 −∆4)2 + 4Ω2

2](Ω
2
3 + Ω2

4)− 4iB} (ρ(1)
14 − ρ

(1)
41 )}, (5)

ρ
(2)
44 =

iΩ1

γ4
(ρ(1)

14 − ρ
(1)
41 ), (6)

ρ
(2)
42 =− Ω1

6γ4A
{−2iA(ρ(1)

12 − ρ
(1)
21 ) + {3γ4[(∆3 −∆4)Ω3 + 2Ω2Ω4]

− 2i[Ω3(∆3∆4 −∆2
4 − 2Ω2

2 + Ω2
4) + (∆3 + ∆4)Ω2Ω4 + Ω3

3]}(ρ(1)
14 − ρ

(1)
41 )}, (7)

ρ
(2)
43 =− Ω1

6γ4A
{−2iA(ρ(1)

13 − ρ
(1)
31 ) + {3γ4[(∆3 −∆4)Ω4 − 2Ω2Ω3]

+ 2i[Ω4(∆3∆4 −∆2
3 − 2Ω2

2 + Ω2
3) + (∆3 + ∆4)Ω2Ω3 + Ω3

4]}(ρ(1)
14 − ρ

(1)
41 )}, (8)

ρ
(3)
14 =− Ω1Ω4

C
{(∆1 −∆4)[−(∆1 −∆3)(ρ

(1)
11 − ρ

(2)
44 ) + Ω3ρ

(2)
43 ]

+ (∆1 −∆3)Ω4ρ
(2)
42 + Ω2(Ω3ρ

(2)
42 + Ω4ρ

(2)
43 ) + Ω2

2(ρ
(2)
11 − ρ

(2)
44 )}, (9)
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with

β = (3iγ4 + 2∆1)(∆1 −∆3)(∆1 −∆4)− (2∆1 + 3iγ4)Ω2
2 − 2(∆1 −∆4)Ω2

3

− 2(∆1 −∆3)Ω2
4 − 4Ω2Ω3Ω4, (10)

A = (∆3 −∆4)Ω3Ω4 − Ω2(Ω2
3 − Ω2

4), (11)

B = (∆2
4 + Ω2

2)[(∆3 −∆4)2 + 4Ω2
2]Ω

2
3 + [2(∆3 −∆4)∆4 + 5Ω2

2]Ω
4
3 + Ω6

3

− 2Ω2Ω3Ω4{(∆3 + ∆4)[(∆3 −∆4)2 + 4Ω2
2] + (7∆3 − 11∆4)Ω2

3}
+ {(∆2

3 + Ω2
2)[(∆3 −∆4)2 + 4Ω2

2] + [7(∆3 −∆4)2 − 26Ω2
2]Ω

2
3 + 3Ω4

3}Ω2
4

+ 2(11∆3 − 7∆4)Ω2Ω3Ω3
4 + [2∆3(−∆3 + ∆4) + 5Ω2

2 + 3Ω2
3]Ω

4
4 + Ω6

4, (12)

C = −1
2
[(∆1 −∆4)Ω3 + Ω2Ω4][(3iγ4 + 2∆1)Ω2 + 2Ω3Ω4]

+ [Ω2Ω3 + (∆1 −∆3)Ω4][
1
2
(3iγ4 + 2∆1)(∆1 −∆4)− Ω2

4]. (13)

Therefore, the first- and third-order susceptibilities
(χ(1) and χ(3)) are

χ(1) =
−2N

∣∣∣⇀
µ14

∣∣∣
2

ε0Ω1
ρ
(1)
14 , (14)

χ(3) =
−2N

∣∣∣⇀
µ14

∣∣∣
4

3ε0Ω3
1

ρ
(3)
14 , (15)

and χ is defined as

χ = χ(1) + 3 |E1|2 χ(3). (16)

The absorption of the probe field and the Kerr nonlin-
earity can be described by the imaginary part of χ(1) and
the real part of χ(3), respectively.

Now, we focus on the dependence of third-order sus-
ceptibility on the intensities of the coherent coupling field
and the microwave field. Based on Eqs. (14) and (15),
Fig. 2 shows the linear absorption and the refractive part
of the third-order susceptibility as functions of probe de-
tuning. For simplicity, all parameters are scaled by the
decay rate γ4, setting ∆3 = −∆4 = γ4, Ω4 = γ4. In
Figs. 2(a)−(c), Ω3 = 1.0γ4, and Rabi frequencies of
the microwave fields are Ω2 = 0, 0.5γ4, and 1.0γ4. In
Figs. 2(d)−(f), Ω2 = 1.0γ4, and Rabi frequencies of the
coupling fields are Ω3 = 0.5γ4, 1.5γ4, and 1.8γ4. Draw-
ing from this figure, when Ω2 = 0, which means the mi-
crowave field is absent, there are two identical EIT win-
dows, and the maximal Kerr nonlinearity is accompanied
by remarkable linear absorption (Fig. 2(a)). This is not
desirable for all-optical switch applications because the
accompanying thermal effect of the devices is not negligi-
ble. When Ω2 changes from 0 to 1.0γ4, it is surprising to
see that the two identical EIT windows become different:
the left window narrows while the right one broadens.
Within the left narrow transparency window, the non-
linear dispersion curve is very steep, suggesting that a
giant Kerr nonlinearity with negligible linear absorption
can be realized simultaneously, as shown in Fig. 2(c). On
the other hand, when Ω2 = 1.0γ4, the left EIT window
becomes narrower, and the strength of Kerr nonlinearity
becomes stronger as Ω3 changes from 0.5γ4 to 1.8γ4. In
Fig. 2(f), Kerr nonlinearity is clearly dramatically en-
hanced while linear absorption is suppressed. Compared

with the case of Ω2 = 0, the maximal value of Kerr non-
linearity is enhanced about five times. In this letter, we
do not present the effect of Ω4 on Kerr nonlinearity be-
cause its effect is the same as that of Ω3. Therefore,
we can achieve giant Kerr nonlinearity with a vanishing
linear absorption by manipulating the intensities of the
coupling and microwave fields.

To understand the effect of the intensities of the coher-
ent coupling field and the microwave field on EIT window
and Kerr nonlinearity, we consider the dressed-state ap-
proach. Working in an interaction picture and taking
into account only the strong coupling fields and the mi-
crowave field, we find that the effective Hamiltonian can
be written as

Heff =− (∆4 |2〉 〈2|+ ∆3 |3〉 〈3|+ Ω2 |3〉 〈2|
+ Ω3 |4〉 〈3|+ Ω4 |4〉 〈2|) + H.C. (17)

Thus, we can obtain the secular equation:

f(λ) =λ3 + (∆3 + ∆4)λ2 + (∆3∆4 − Ω2
2 − Ω2

3 − Ω2
4)λ

− 2Ω2Ω3Ω4 −∆3Ω2
4 −∆4Ω2

3, (18)

where λ is the eigenenergy of the Hamiltonian, which
gives the positions of dressed sublevels |k〉 (k = +, 0,
and −) generated by the two coupling fields and the
microwave field. When this transition (i.e., |1〉 ↔ |k〉)
is probed by the weak probe field, resonances occur at
points where the probe frequency matches the energy-
level difference between |1〉 and |k〉. If the probe field
detuning (∆1) is chosen such that it is in resonance with a
dressed state, then it experiences absorption maxima[21].
Hence, the EIT window is dependent on the difference of
the two neighboring eigenvalues. We see from Eq. (18)
that the three eigenvalues (λ+, λ0, and λ−) are de-
pendent on the three coherent fields (Ω2, Ω3, and Ω4)
and can easily be obtained. For example, for the pa-
rameters in Fig. 2(c), λ+ = 2.22γ4, λ0 = −0.54γ4,
and λ− = −1.68γ4; for the parameters in Fig. 2(e),
λ+ = 2.62γ4, λ0 = −γ4, and λ− = −1.62γ4. To de-
termine the influence of the coupling and microwave
fields more clearly, we respectively plot the evolu-
tions of the three eigenvalues (λ+, λ0, and λ−) versus
Ω2 and Ω3 in Fig. 3 taking the same parameters as
those in Fig. 2. In Fig. 3(a), note that the eigenvalue
difference between λ+ and λ0 is increasing, while that
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Fig. 3. Evolutions of eigenvalues of the three dressed states
λ+ (solid lines), λ0 (dashed lines), λ− (dotted lines) versus
(a) Ω2 and (b) Ω3, respectively. Other parameters are the
same as those in Fig. 2.

Fig. 4. Variation of Re[χ(3)] (solid curves) and Re[T1] (dotted
curves) versus the probe detuning ∆1 with Ω3 = γ4. (a) Ω2

= 0.5γ4, (b) Ω2 = 1.0γ4. Other parameters are the same as
those in Fig. 2.

between λ− and λ0 is decreasing, corresponding exactly
to the narrowing of the left EIT window and the broad-
ening of the right EIT window when Ω2 changes from
0 to 1.0γ4 (Figs. 2(a)−(c)). However, the reverse phe-
nomenon is present when Ω2 > 1.0γ4, that is, the left
EIT window is wide and the right one is narrow (not
shown in Fig. 2). In Fig. 3(b), the stronger Ω3 is, the
smaller the eigenvalue difference between λ− and λ0 is.
This corresponds to the narrowing of the left EIT win-
dow, as shown in Fig. 2(f). Within the narrower window,
the steep nonlinear dispersion profile of the probe field
makes it possible to enhance Kerr nonlinearity accompa-
nied by vanishing absorption[22]. Dressed-state analysis
suggests that the widths of the EIT window can be con-
trolled by the intensities of the coupling and microwave
fields, leading to enhanced Kerr nonlinearity.

In the following, we mainly discuss the effect of Ω2 on
Kerr nonlinearity by using an analytical explanation. In
Eq. (9), the last two terms are the products of Ω2 and
the coupling fields. When the microwave field is applied
to |2〉 ↔ |3〉, Ω3 and Ω4 interact with Ω2; consequently,
Kerr nonlinearity is clearly enhanced. Here, the last two
terms in Eq. (15) are designated as T1 and the other
terms as T2, then χ(3) = T1 + T2. We plot Re[T1] as
a function of ∆1 (Fig. 4) and display Re[χ(3)] for com-
parison. They are approximately coincidental in the nar-
row region of the giant enhancement of Kerr nonlinearity.
As a result, we consider from the analytical aspect that

the giant enhancement of third-order susceptibility is un-
doubtedly caused by interactions between the microwave
and the coupling fields. In the scheme proposed in Ref.
[19], giant Kerr nonlinearity is obtained by controlling
the relative phase of coherent driven fields. On the other
hand, in the present scheme, nonlinear property is manip-
ulated by controlling the intensities of the microwave and
coupling fields. The proper choice of Rabi frequency of
the microwave field enhances Kerr nonlinearity, despite 1
being the ratio of the two coupling fields. This finding is
different from that in Ref. [20], where the enhancement
of Kerr nonlinearity is accompanied by strong linear ab-
sorption.

In conclusion, we have investigated the effects of the
intensities of the coupling field and the microwave field
on Kerr nonlinearity and on double EIT in a tripod-
configuration four-level atomic system. Results show
that the properties of EIT and Kerr nonlinearity can be
significantly modified by changing the intensities. More-
over, the proper choice of intensity of the microwave
field leads to a giant Kerr nonlinearity accompanied with
vanishing linear absorption, despite 1 being the ratio of
the two coupling fields. This is different from that in
Ref. [20], where the enhancement of Kerr nonlinearity
is accompanied by strong linear absorption. Dressed-
state analysis suggests that the widths of the EIT win-
dow can be controlled by the intensities of the coupling
and microwave fields. Close inspection of the analytical
expression undoubtedly shows that interactions between
the microwave and coupling fields are responsible for the
large enhancement of Kerr nonlinearity. This system may
potentially be applied to ultraslow optical solitons, fre-
quency conversion, and other information processes.
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